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Chapter 1

e p.2
In the case of a single reactant or population we saw in Chapter 13, Volume I that limit cycle periodic
solutions are not possible,
should be
In the case of a single reactant or population we saw in Chapter 1, Volume I that limit cycle periodic

solutions are not possible,

e p.3
the Field-Noyes model for the Belousov-Zhabotinskii reaction, which we considered in detail in Chapter 8.
should be
the Field-Noyes model for the Belousov-Zhabotinskii reaction, which we considered in detail in Chapter 8,
Volume 1.

e p.13
Assuming that they compete for the same food resources, ... , (cf. Chapter 5, Volume I)
should be
Assuming that they compete for the same food resources, ... , (cf. Chapter 3, Volume I)
e p.14
GIZbZSZ (i:1,2), t:alT, :I::\/(J,l/Dl)f7
(&1 (&) DQ aq (117)
= — = = K= — o= —
et b2 y 2 bl ’ D1 ) as
should be
Gl:bZSZ (i:1,2), t:LLlT, :I::\/(J,l/Dl)f7
(4] (&) DQ a9 (117)
= et KR = — o= —
7 b2 ) 72 bl ) D1 ’ a
e p.14
00
87251 = V201 + 91(1 - 01 — ’}/102)7
o (1.18)
87252 = Kv291 =+ a92(1 — 92 — ’}/201)



should be

00

87251 = V201 + 91(1 - 01 — ’}/102)7

50 (1.18)
87252 = szeg =+ a92(1 — 92 — ’}/201)

p-14

In the absence of diffusion we analysed this specific competition model system (1.18) in detail in Chapter
5, Volume 1.

should be

In the absence of diffusion we analysed this specific competition model system (1.18) in detail in Chapter
3, Volume 1.

p-14
it comes into the category of competitive exclusion (cf. Chapter 5, Volume I).
should be

it comes into the category of competitive exclusion (cf. Chapter 3, Volume I).

p-15
In general, the system of ordinary differential equations (1.18) cannot be solved
should be

In general, the system of ordinary differential equations (1.21) cannot be solved

p-18

It seems that the broad features of the displacement of the red squirrels by the grey ... discussed in Chapter
5, Volume 1.

should be

It seems that the broad features of the displacement of the red squirrels by the grey ... discussed in Chapter
3, Volume 1.

P-23

In Patch 1, where ml <z <ml+1; form=0,1,2,...,
should be

In Patch 1, where ml < x <ml+1; for m =0,+1,4+2,...,

p-23
Figure 1.6: the graph should be shifted —I, along z-axis. (7'7 7 % z W& A I, T PFIBETIUT
ELLSR3,)

P-25

At the boundaries between the patches, x = x;, where xz; = ml for i = 2m and x; = ml+1{; for i =2m+1



(m=0,1,2,...)

should be

At the boundaries between the patches, x = x;, where xz; = ml for i = 2m and x; = ml+1; for i =2m+1
(m=0,+1,%+2,...),

P-25
-1 —1
€3 = T ) Ne = e (147)
TnYe — 1 TnYe — 1
should be
Ve — 1 Tn — 1
e3 = ——— ng = ——— 1.47
s TnYe — 1’ ’ TnYe — 1 ( )
p-25

As with the red and grey squirrel competition we know it is possible to have travelling wave solutions
connecting the native-dominant steady state (e, n1), to the existence steady state, (e2,ns2), or the invader-
dominant steady state, (e3, ng).

should be

As with the red and grey squirrel competition we know it is possible to have travelling wave solutions
connecting the native-dominant steady state (e1,n1), to the invader-dominant steady state, (ez,n2), or the

existence steady state, (es,n3).

p-26
The native-dominant steady state is linearly unstable if there exists a k2 so that A(k?) > 0.
should be

The native-dominant steady state is linearly unstable if there exists a k? so that Re A(k?) > 0.

p-27
Gy — -G
es = Tnla2 927 ng = Yeg2 2 (1.50)
YeVn — 1 Yeyn — 1
should be
Yega — G- YnGo —
e3 = Yed2 27 ns = In'T2 92 (150)
YeVn — 1 YeVn — 1
p.27

The stability conditions are ... 7, < g2/Ga: the coexistence steady state is stable, and all other steady
states are unstable.

should be

The stability conditions are ... v, < ga/G2 and . < G2/gs: the coexistence steady state is stable, and all
other steady states are unstable.

p-29

I + Gl
htGels L yi<0 (1.64)



should be

P-29

should be

p-30

should be

p-31

should be

p-31

should be

p-31

should be

lim 0 () = I =
lo—00

l Gl
;i;g_%+MQ

(1= 7e)li>(7e — G2)la

(1 - 76)l1>(76 - GZ)ZZ

> . l

e(z,t) = ZAi(e’ it cos [(z - 51 — ml) V1= + )\1}
i=0
> I
ZAir—:’*’tcos [(x — 51 — ml) V1I—"e+ /\1}
i=0

-G
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1-— e 1- Ve
-G
arctan M
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(1.64)

(1.65)

(1.65)

(1.66)

(1.66)

(1.71)

(1.71)

(1.72)

(1.72)

(1.73)

(1.73)



p.-31

~1 l
G5 =+ 2L v (%m) (1.75)
2

should be

. e — 1 l
GS =7e + WD tan? (51\/1 - A“) (1.75)
2

p-37

The wavefront solutions given by ... where v =0 when v =1 and v = 1 when u = 0.

should be

The wavefront solutions given by ... where (u,v) — (0,1) if s = —o0 and (u,v) — (1,0) if s — oco.

p-42

The ‘diffusion’ coefficient D is associated with the axial current in the axon and, referring to the conservation
of current equation (7.38) in Section 7.5, Volume I, ...

should be

deleted: the conservation of current equation is never introduced in Volume I. (7.38) indicates Hodgkin-

Huxley model.

p-45

Equation (1.98) is a specific example of the one studied in Section 13.5, Volume I, specifically equation
(13.73), which has an exact analytical solution (13.78) with a unique wavespeed given by (13.77).

should be

Equation (1.98) is a specific example of the one studied in Section 13.5, Volume I, specifically equation

(13.73), which has an exact analytical solution (13.88) with a unique wavespeed given by (13.87).

p-45
This is the same condition we get from the sign determination given by (13.70) in Volume I

This is the same condition we get from the sign determination given by (13.80) in Volume I

p-48

This is just a scalar equation ... the same as those studied in the last chapter. It is essentially the same as
equation (13.62) which was discussed in detail in Section 13.5, Volume I.

should be

This is just a scalar equation ... the same as those studied in Chapter 13, Volume I. It is essentially the

same as equation (13.83) which was discussed in detail in Section 13.5, Volume I.

p-48

With the scaling as in (1.102)
should be

With the scaling as in (1.103)



e p.6G1

should be
e p.63

should be
e p.G4

should be

e pP.67 Exercise 1

where a > 0, 0 < b < 1 and w and v represent the predator and prey respectively.

should be

where a > 0, 0 < b < 1 and u and v represent the prey and predator respectively.

e p.67 Exercise 2

where U and V are respectively the predator and prey densities,

should be

where U and V' are respectively the prey and predator densities,

e p.70 Exercise 2

[Problems 6 and 7 have been investigated in depth analytically by Rinzel and Terman (1982).]

should be

[Problems 7 and 8 have been investigated in depth analytically by Rinzel and Terman (1982).]

Chapter 2
e p.73
Haekel
e D.85

should be

Haeckel

The critical wavenumber k. is then given (using (2.26)) by

(1.135)

(1.135)

(1.145)

(1.145)



should be
BRSO ke (X, (X (2.25) 2 Vv0)

p-86

Note that, within the unstable range, Re A(k?) > 0 has a maximum for the wavenumber k,, obtained from
(2.25) with d > d..

should be

(ZORAERFE->TED, UTOREZHET2.) KX (2.25) 26H5N5B ky, 1, h(k?) Z2RAES5 LD S k OfE
THY, ZUF ReA(k?) >0 ZHALS LD S k DL IE—RIC—HKL 2w, 2B, BED k OfHIZR (2.68)
TRD 5.

p-91

Whenever (2.34) are satisfied and there is a range of wavenumbers k& = nz/p lying within the bounds
defined by (2.29),

should be

G (2.35) SATE N, O (2.29) DHEIHICEENIPE b =nn/p BHFET D L E,

p-93
Wi(z,y) should be W, 4(x,y)

p.104

that is, all A(k?) in (2.22) have Re A(k? = 0) < 0,

should be

Thbbt, X (223) D ANE?) BReA(2=0)<0% QRED) RS BTNEES KV,

p.105
by extending the parametric method we described in Chapter 3, Volume I, for determining the space in
which oscillatory solutions were possible.

should be

AP 7 B THREIIEDIE U 287 X — S M2 RIET BRIl > 72, BENERZ v Fkzlv 3,

p-106 The second line of equation (2.57).

1—u? 1 2
= a>7u0( uO), b:uofa>7u0( + )
2 2
should be
1—ul 1+ u2
= a> 71&0( 3 uO), b:uo—a<7uo( ;_uO)

p-108 in the legend of Figure 2.12
(that is, d = 1)
should be



deleted: The curve C does not correspond to any value of d. (HIl& : d DA & ThHihifR C ITIZAEEK
L7\,)

p.109

that is, when Amin(k2) = 0,

should be

D hanin = h(kn?) = 0 Th 2 RIED 5,

p-113

the Thomas (1975) and Schnakenberg (1979) systems, given respectively by (2.7) and (2.8)

should be

Thomas (1975) % Schnakenberg (1979) ®% (2 zh, X (2.8) (D2, 31TH), (2.7) KX E&HSIN3)

p.116

Myerscough and Murray (1992), for the case of a cell-chemotaxis system (see also Chapter 4), used the
technique

should be

Myerscough and Murray (1992) (%, MfgEER 8 5 EHS|) 1oL < Libokikz v,

p-121
and the first mode

ay exp [f’(O) - D(%)Qt} sin LLHC

starts to grow with time.
should be
RyIOE—F
T T

ap cxp{ [f’(O) - D(Z)Q]t} sin T
DRGSR & & HITHEL Tl

p.122

From the spatial symmetry in (2.77) and (2.81) — setting # — —x leaves the equations unchanged —
should be

X (2.77) R (2.81) 1K RSN BEMNNE TAbb, o % L o CEHLTHHRRADIELL AV LS 4
LN

p.122

and integrate with respect to x from 0 to L
should be

T IOV, [TED z 26 L2 $THEAZITI &,



p.124

when Dm2U/L2 is tangent to the curve f(U), at P

should be

R DU/ L B3R (U) £8P THT A E

p.125

tangent to F'(U) at P.

should be

Mg f(U) & P T2

p-128

T3 and T4 are not
should be

Ll T3, T4 13,

p.128

should be

p.132

should be

p.132
(4m —27%d) < 0

p.133

should be

solution trajectories satisfying (2.94)

F (2.93) OfFEE L TIZE 5\

Um U&Z
_ Tormy—1 -1
L7/UQ VD)) dUJr/Um V- (U) U

L:/Um[VJr(U)]’ldUJr/UQ/ V()] tdu

dE Loa 2 Loy 2
< —d | (uf, +vi)de+4m | (ui+vi)dx
It A ;T Vzg e Tl

< (4m —27%d)E

1 1
— < —d/ (u?, + v2,)dx + m/ (uZ +v?)da

< (2m —2n%d)E

should be  2m — 2w2d < 0

m= u|[Vuf(w)

m = mijVuf(u)H

(2.96)

(2.96)

(2.102)

(2.102)

(2.107)

(2.107)



p-133
dE _
= / (Vu, VDV u)dr + / (Vu, VF)dr
B B

(Vu, Vu,)dr

(2.108)
:/ (Vu,DV2u>dr—/(VQU,DV2u>dT+/ (Vu,Vy f - Vu)dr
aB B B
< fd/ |V2ul?dr + mE.
B
should be
dE
% = B(Vu,Vm)d'r
= / (Vau, VDV u)dr + / (Vu,Vf)dr
B B (2.108)
= / (n-Vu, DV2u)dr — / (V2u, DV2u)dr +/ (Vu, Vo f - Vu)dr
aB B B
< —d/ \V2u|2d’r +2mE.
B
p.134
dE . .
— < (m-2ud)E = lim E(t)=0 if m<2ud (2.110)
dt t—o0
should be
dE -
’ <(@2m—-2ud)E = m<pdzsld thm E(t)=0 (2.110)
—00
p.134

Murray (1975) showed that in a finite domain all spatial heterogeneities must die out (see Exercise 11).
should be

Murray (1975) (&, SHBRGERO & &, W 52N -RELPRINTLE ) T 2R LA GEENE 8
2SNz v),

p.136
b>2u(l+ Kud)]™ ' =1, b>0,
b> 2[u(1+ Kud)| 2 — é,
b < 2u(l+ Kuj)] ™% — 2v2[du(l + Kug)] ™/ + %
should be

b>2[ug(l+ Kud)]™' =1, b>0,

1
b > 2[ug(1 + Kud)] ™2 — 7

1
b < 2fup(1+ Ku2)] 2 — 2v2[duo(1 + Kud)] 7Y + -

10



e p.137 "
Uy = ru(l — ?) - EU"'Dumz:

u=0onx=H, Uy, =0onz=0
should be
u
Uy = ru(l — ?) — Fu+ Dugy,
u=0 (z=H), uy =0 (z=0).
e p.138
ou 0%u 0%u
e Vf(uvv)+d1@+d287y27
Ov 0%u 0%u
¢ = 19w, v) +ds o + d487y2
should be
ou 8u 0%u
o = W) +digs + dQ@T/Q’
Ov 0% 0%
7 = 9w v) Fdsms + d4@
Chapter 3
o p.146
.. surface of a tapering cylinder of length s with 0 < z < s and with circumferential variable q.
should be

.. surface of a tapering cylinder of length s with 0 < z < s and with circumferential variable 6.

e p.146
2 2.2
L=k} <k < o5 T <K =M
should be
712 m27r2
7sz%<k2:ﬁ+ 2 <ki=~M
e p.167
ko £ (k3 — 4k3)1/?
f(g0)=0 = g=0, gi.go=— ( 22k2 2 (3.14)
should be
ko + (k2 — 4k2)1/2
Fe0) =0 = =0, gogs— 2" o7 2 (3.14)
e p.168

The results are shown in Figures 3.12 to 3.15.

11



should be

The results are shown in Figures 3.15 to 3.18.

p-172
Substituting in (3.8) we can calculate the distance ...
should be

Substituting in (3.18) we can calculate the distance ...

p-172

Figures 3.15(c) and (f) are specific,
should be

Figures 3.18(c) and (f) are specific,

p-176

We consider a single eyespot with the standard length a in the nondimensionalisation (3.11) to be the
diameter of the control in the experiment. Since we are interested in the growth of the eyespot to its
normal size this means that L = a and ...

should be

We consider a single eyespot with the standard length L in the nondimensionalisation (3.11) to be the
diameter of the control in the experiment. Since we are interested in the growth of the eyespot to its

normal size this means that ¢« = L and ...

p-177
.. we can determine D, k and C from a best fit analysis.
should be

.. we can determine D, K and C from a best fit analysis.

p.184

V2% +kep =0, (n-V)y=0 on r=1,6 (3.41)
should be

V2 + k=0, (n-V)yy=0 on r=1,9 (3.41)
p.185
... the problem becomes one-dimensional and the eigenvalues &k — n, so we ...
should be

... the problem becomes one-dimensional and the eigenvalues k,, — n, so we ...

p-186

12



If we now choose the basic length to be the radius r; of the annulus ...
should be

If we now choose the basic length to be the radius R; of the annulus ...

Chapter 4
e p.199
while for embryos incubated at 33°C it is around day 35.5
should be

while for embryos incubated at 33°C it is around day 36.5

p-207
Here we are interested in the spatial patterning of the placodes as in Figure 4.10(f).
should be

Here we are interested in the spatial patterning of the placodes as in Figure 4.11.

p.218
If we now carry out the scale transformation in (4.3)
should be

If we now carry out the scale transformation in (4.4)

p.222
some length L. a mode 2-like solution as in Figure 4.15(b)
should be

some length L. a mode 2-like solution as in Figure 4.15(c)

p.222
So, when the subdomain, on which c is below the threshold, has grown large enough, a single mode spatial
pattern in u and v will start to grow like the mode 2 pattern in Figure 4.15(b).

should be

So, when the subdomain, on which c is below the threshold, has grown large enough, a single mode spatial

pattern in v and v will start to grow like the mode 2 pattern in Figure 4.15(c).

p.224
A representative continuous function of time for the source of inhibitor at the anterior end of the jaw
should be

A representative continuous function of time for the source of inhibitor at the posterior end of the jaw

p.226
Figure 4.17 are plotted on the domain [07 1] but the actual domain size is [(), exp rtl] where r is the growth

rate parameter of the jaw.

13



should be
Figure 4.17 are plotted on the domain [O, 1] but the actual domain size is [(), exp 7‘t} where 7 is the growth

rate parameter of the jaw.

p.231
The most striking prediction result is again obtained when the near-end (posterior) regions of the jaw
domain are initially affected.

should be

The most striking prediction result is again obtained when the anterior regions of the jaw domain are

initially affected.

p.240
With a two-dimensional domain with sides L, and L,, we consider the wavevector k = (k,, k,) , where
ky =mmn/L, k, = lm/L with m and [ integers.

should be

With a two-dimensional domain with sides L, and L,, we consider the wavevector k = (k,, k,) , where

ky =mn/Ly, k, = ln/L, with m and [ integers.

p.244
From the nondimensionalisation (4.39) this also corresponds to slow production or rapid diffusion or decay
of chemoattractant in the dimensional problem.

should be

From the nondimensionalisation (4.21) this also corresponds to slow production or rapid diffusion or decay

of chemoattractant in the dimensional problem.

p-249

Figure 4.2 shows a typical evolution of such a pattern for the system (4.30).
should be

Figure 4.2 shows a typical evolution of such a pattern for the system (4.31).

Chapter 5

P-255
Figure 5.1 (a) — (b), (b) = (a) (opposite).

p.258
If the dissolution happens quickly, the aggregates appear to be ...
should be

If the dissolution happens slowly, the aggregates appear to be ...

p.258

14



On the other hand if the dissolution happens a little less quickly,
should be
On the other hand if the dissolution happens quickly,

p.258
If the dissolution happens even more slowly,
should be

If the dissolution happens less quickly,

p-264
on kin kys®
— =D, V*n— k -
D Von V((k2+c)2Vc)+ 3n(k9+52 ,
should be
on kin k'452
— =D,V’n—-V- k —
5 A\ \% <(k2+c)2 Vc)+ 3n(k9+s2 ,
p-265
on kin
A, Dnv2 - )
ot " V((k2+c)2v)
should be
on kin
— =D,V? .
5 Vn V((k2+c)2v>7
p-269
) t )
’LL(.T,t) :1+Ef(t)zelkz7 ’U(‘Tat) = 7+6g(t)zelkz
k ptl k
should be
) t )
) =1+ L (t)eke, )= —— + (t)etke
u(@,?) s}l;fme o, t) = oy 6%:.%()6
p-271

The point 7 = 7,it at which A} passes through zero is the same point
should be

The point 7 = 7.t at which Ay passes through zero is the same point

p-271
We can determine the fastest growing wavenumber, Kgrow say,
should be

We can determine the largest growing wavenumber, Kiargest 52y,

15

(5.11)

(5.11)

(5.14)

(5.14)

(5.23)

(5.23)



(ROFLIBMETIE—FLIF A\ DRRELRZE—FTHY, AXD Ak?) =0 kB3 E—FriArLeEtl
TVBRE—FORKHETH S, £/, p27T4 D Kyow BRDESRETZ2E—FEET L6, I TORS
% Klargest &8O, )

p-271
2 rap
grow r \dr
should be
2 rap
K2 == (— - )
largest + \dr
p-272

F(r9) =1(= f(0))  should be  Fi(r9) = 1(= f(0))

pP-275

Among other numerical checks all of the solutions were checked against the integral form (5.35) of the
conservation of bacteria

should be

((5.21) D)

pP-275

As predicted by (5.32),
should be

As predicted by (5.31),

p-275
patterns consisting of a random arrangement of spots were generated as shown in Figure 5.8.
should be

patterns consisting of a random arrangement of spots were generated as shown in Figure 5.9(a).

p-276

Initially the cells are uniformly distributed over the one-dimensional domain and disturbed with a small
perturbation of O(0~ 1).

should be

Initially the cells are uniformly distributed over the one-dimensional domain and disturbed with a small
perturbation of O(10~ !). [corrected to be consistent with Tyson et al. (1999)]

p.277

7 =0, the initial conditions, 7 =1, 7 = 2, 7 = 3.002. (b) Surface plot of the solution for 7 =2 ...
should be

t = 0, the initial conditions, t =1, t =2, t = 3.002. (b) Surface plot of the solution for t =2 ...

16



p.281

should be

p.281

should be

p.281

should be

p.281

should be

p-283

ou
ot

ou

at

2

U
g(u,v) = ﬁwm —uv

1 w?
X(’U)— (1+1})27 f(u,v)—pu <61+,w2
2
g(u,v) :5wu—|—u2 —uv

ury _ (& ettiks
vy c2)

ury _ (& etk
K% Co

Figure 5.11: ¢ = Re A (vertical axis).

p-286

should be

Wsl :w|52

V2 + k2 =0,
v {1/153 =1ls,
1/)‘52 :w|S4

V2 + k2 =0,
vHEY {’tl)sl =1|s,

17

w
—u
—+ w

U AVu—av. [
dyV°u —aV <(1 o) Vv) + pu ((5 1
2
_ 2, _av. % v
=d,V*u —aV ((1+v)2Vv)+pu<61+w2 u)
o s w u*
(u’v)7<6l+w’ﬁwu+u*2)
. s w? u*
(u’v)_(51+u’2’ﬂwu+u*2)
()= g o) =pu (s
Xvi(l—l—v)27 v, 0) = pu 14w v

(5.41)

(5.41)

(5.43)

(5.46)

(5.46)

(5.52)

(5.52)

(5.61)

(5.61)



p-286

where the k2 are allowable eigenvectors, which we discuss below. Substituting the boundary conditions in
(5.61) into the solutions (5.62) we obtain

should be

where the k,, are allowable eigenvectors, which we discuss below. Substituting the the solutions (5.62) into
boundary conditions in (5.61) we obtain

p-288
ou _ Ou 9 9
T w 7 Veu = V*a,
1
aV - (ux(v)Vv) = aV - {(u* +u) (x* + x50+ 5)(&,172 + - ) V@}
= u'X*V?0 + (u*X Vo + x*Vi) - VO
1
+ {éu*xwa(@Q) +XT,V(M)} Vot (5.68)
1
Flu,0) = £+ (Fi + )i+ 5 (Fau + £5,)8 + fi,00
1
should be
ou . 0i 2 oo
E = w 077 Viu =V u,
1
aV - (ux(v)Vo) = aV - {(u* +a) (X* + X0+ 5)(;1)132 + - ) V@}
=« [u*x*VQ@ + (WX VO + x*Va) - Vo
1
+ {éu*X:UV(@Q) +x V(@) Vo], (5.68)
1 . .
f(u’ U) = f* + (.flfﬂ Jr 'f:‘jﬁ) + 5(:}[':“&2 + Q.flj’l/'ﬁi} + 'f:i“’]j'z)
1 ; .
+ 6 (fl;:ﬂ'll IA[/(; + SJC’IT’II “1}2{7 + BJC’IT’I,"U/I}J/)Q Jr .f'lf’(v’?r’qj'(}) + o
p-288
The matrices A and D were determined above in the linear analysis.
should be

The matrices A and D were determined above in the linear analysis.

p.289
u\ _ 9 (wm —a(x*Vuy + wx;Vor) - Voy
L <v2) Y ar <v1) + ( 0
1, 1 (5.73)
Py :uu + ;vu uD+ 1?1)1)2 * o * *
- 2f 1+ foyuiv 2f 1 Ca ((fu)a —(au*x*)o V2 + (fu)a) (u1>

1. . 1, 9u)a 9o)a v
quuu% + g, u1v1 + igmﬂ’% (62) 90 1

should be

18



ug\ i Uy —a(x*Vuy + u*x:Vuy) - Vg
L(ie) =ear (o) + ( ;

1 1 : a : a
79:&“’% + g:;vulvl + 791’;111}% (g ) (g )
2 2

p.290

Relating this form to (5.62), a;(T)+a;(T) x B.

should be

Relating this form to (5.62), a;(T)—a;(T) x B.

p-290
the solution amplitude is |a;(T)].
should be

the solution amplitude is 2|a;(T)].

p.291

,*u2+f*u1m+1*v2 2
g T (e o e e

(5.73)

) ()

Whether or not a stable spatially heterogeneous solution exists depends on the solutions of these amplitude

equations as t — oo.
should be

Whether or not a stable spatially heterogeneous solution exists depends on the solutions of these amplitude

equations as 1" — oo.

p.292
then we can vary ¢ and 3, and determine « from the first of (5.61).
should be

then we can vary ¢ and f3, and determine « from the first of (5.60).

P-293 Figure 5.13 caption
a is determined from equation (5.80).
should be

a is determined from the equation below (5.80).

p.293

(Vdy + Vpdy)? (1 +9)

p= « 1

LdHB0, (5.80) DFTIOREFETL RV, TORICECTE, (u,0*) = (6,50),

Fr=—pd, fr=0,g" =86, g =—0,d, =1 THor®, (560)IfATSE

(Vdu + Vpdy)? - (1 + B)?
Bo

19
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&Y, BERHETER, [ZHUcthy, M513 B2V b DPFHTH S, ]

e p.294

One of the four remaining parameters can be determined from the bifurcation condition (5.58).

should be

One of the four remaining parameters can be determined from the bifurcation condition (5.59).

e p.296

With this formulation the unknown parameters are 8, § and p.

should be

With this formulation the unknown parameters are 3, 6 and p.

e p.296

Figure 5.15: 8 — B (horizontal axis), w — ¢ (vertical axis).

e p.302

Linearising equations (5.85) about (5.86) and (5.87) and solving for the eigenvalues, we find that the first

steady state is always a focus. For the second to be a focus as well, we must have

c ; Cmin = 2 dup(SWO

should be

(5.94)

Linearising equations (5.85) about (5.86) and (5.87) and solving for the eigenvalues, we find that the first

steady state is always a stable node. For the second to be a stable node as well, we must have

c Z Cmin = 2\/dup5W(]2/(1 + W(?)

o p.304
W2
Hi=p <1+W2
aUk?
=~y
should be
sW2
h :P(W
aUk?
Hy=-——""_
SCERE
Chapter 6
e p.331

-2) v (i)

()

-u)-(i i)

()

V- [(piee + p2bed) + (e +V'0I) + (rin + 1op + 1Y V2p)I| — su =0

20
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(5.94)

(5.94)
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should be

Vo [(pee + p2bed) + (e +V'0I) + (on+ 1p + 1YV p)I| — su =0

p.338

no viscoelastic effects in the ECM.
should be

(HiE) ECM ORISR 22w (41)

p.338
c(/cz) = 'yTlrk4 +7r(l— 72)k2 +7rs
should be
c(kz) = 'yrlrk4 +7r(l-— 71)k2 +rs
p.343

..., which have dispersion relations with a finite range of unstable wavenumbers ...
should be
(HiM) ANLE RO R TH L, (#h)

p-350

An experimental paper by Nagawa and Nakanishi (1987) confirms...
should be

An experimental paper by Nogawa and Nakanishi (1987) confirms...

p.363
looking for solutions proportional to e
should be

looking for solutions proportional to e

ot+ik.x

ot+ik-x

p.363

if, for any k2 # 0, a(k?) # 0 and the coefficients in (6.67) satisfy the inequality
should be

if, for any k2 # 0, a(k?) # 0 and the coefficients in (6.66) satisfy the inequality

p.363
If 7 = 0, then b(k?) > 0 and c(k?) > 0 for all wavelengths k,
should be

If 7 = 0, then b(k?) > 0 and c(k?) > 0 for all wavenumbers k,

21
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p.365

(these are Figures A.1(d) and (f) in Appendix B, Volume 1).
should be

(these are Figures A.1(d) and (f) in Appendix A, Volume 1).

p-367
see, for example, Nagawa and Nakanishi (1987)
should be

see, for example, Nogawa and Nakanishi (1987)

p.372

where L is some appropriate characteristic length scale and c3 is the largest zero of R(c) as in Figure
6.25(b).

should be

where L is some appropriate characteristic length scale and c3 is the largest zero of R(c) as in Figure
6.25(a).

p-373
recall the discussion in Section 13.6 on postfertilization waves on eggs.

recall the discussion in Section 13.6, Volume I on postfertilization waves on eggs.

p-376
We should interject here, that Nagawa and Nakanishi (1987) comment that
We should interject here, that Nogawa and Nakanishi (1987) comment that

p-376 (o9 is defined as the negative constant stress below)

T
on =
" T 14e
should be
T
o, =
° 1+e

p-376 (o9 is defined as the negative constant stress below)
oz =00 +0og+oatov]. =0,

T GT(c)

= —GE(e — — — Gpe; . 6.84
0= Ty G Pl e G (6.8
X elastic H’—/ viscous
osmotic active stress
should be
0y =[0o+0g+0a+ov], =0,
T G7(c)
= —GE(e — — — Guey . 6.84
7T 11 M 1+¢2 1t (6.84)
\’-4/ elastic R’-/ viscous
osmotic active stress

22



e p.380
ReA(0) <0 = b(0)>0, d(0)>0

6.95
ReA(k) >0 = b(k)<0 > and/or d(k) <0 forsome Kk #0. (6.95)
should be
ReA(0) <0 = b(0)>0, d(0)>0
b(k 6.95
ReA(k) >0 = {20 <0 3k £ 0. (6.95)
b(k) >0 and d(k) <0
e p.389
They suggested that a specific factor produced by the L-CAM positive dermal cells,
should be

They suggested that a specific factor produced by the L-CAM positive epidermal cells,

Chapter 8
o p.424
Umatrix+a'viscous + Oclastic — H1€¢ + /120tI + E/(E + VGI) (85)
should be
O s =g + Topge = (114 + 20,1 + E' (e + v0I) (8.5)
o p.425
u(z,y = a,t) = u(z,y =b,t) =u(x = a,y,t) =u(x =b,y,t) =0 (8.8)
should be
u(z =0,y,t) =u(r = a,y,t) = u(z,y = 0,t) = u(z,y = b,t) =0 (8.8)
o p.426

Depending on the sign of

A = /02(k?) — 4(pk? + s)c(k?) (8.19)

the solutions given by (8.14) can be real or complex.
should be
PTFCERSND A ORFHC XD, = (8.18) THA 5N 3 MIZFHI bEERKICOAD 5 5 :

A =V (k?) — 4(uk® + s)c(k?). (8.19)
e p.431
Parameter Domain 7 < 2(1 +v), sD > 1+ v: Region II
should be

B I NI X =R 7 <2(1+v), 1 <sD+1+v

23



e p.431
If sD > 1+ v the coefficient of the O(k?) term is always positive ...
should be
bL 7 <2(l4+v)A7n <sD+1+vTHIUE, OK?) DHEHORHESEICEDZ, -

e p.431
Parameter Domain 71 < 2(1 + v),sD < 1+ v: Region III
should be
B IIL 2 8T A—=FH 1+ v+ \/sD{2(1 +v) —sD} <7 < 2(1+v)

e p.431
the dispersion relation, oy, from (8.18) is complex for wavenumbers k7 < k? < k3
should be
k2 < k% < k? A THEBE2 LT, K (8.18) D EHLR oy 3EFESTH B

o p.431
Parameter Domain 71 < 2(1 4 v),sD < 2(1 + v): Region IV
should be
BRIV 1 ST A=FHH sD +1+v <7 <1+v+/sD{2(1+v)—sD}

e p.432

292 W82 TRLAHL IL IIL IV ICBIF 355 A— 5 O4Mt e, TWRENZZEMAS—v . N5 A—%
n=1(1—and)> <bh, 7, =214+v), =14+v+/sD{2(0 +v) — sD}, 7. = 1 + v+ sD.

FHIE, 8T XA =% ORI BUEREITICEB T 2 EOIRE

I Ta < T1 EEDOIEZE DWEHDIEE BB I E
II Ta > T1 R =V IR R
Te > T
111 T <71 < T — IO (7 D 9 b —EBIZFhAERE))
sD <1+4+v
v Te<T1L ST — TR D IED LR ED
sD <1+4+v

o p.436
In dimensional terms this condition is given by (8.19) in which the matrix thickness, namely, pg, does not
appear.
should be
ERTUUETOETIE 2 D&M (8.21) THZ SN ED, ZOHICIZHEDREE py 138 iw,

e p.438
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Using the vector relation V - e = grad div u — (1/2)curl curl w ...
should be
AV - e = grad div u — curl curl u ZHWT--

Chapter 9
o p.456 N
_ [ e
=/, ve
_ (ﬁ) In(2Ng) — (gz - ;) m[2(1 — No)]
(4h=3)(h—1) | [2(h=1)No +2(2h — 1)
(2n—1)(3h — 2) n[ 5h—3 }
should be
_ [N de
- /1/2 e
= (th_ 1) In(2Np) — (;Z - ;) In[2(1 — Np)]
(4h=3)(h=1) | [2(h=1)No+2(2h ~ 1)
(2h — 1)(3h — 2) n{ 5h— 3 }
e p.477

From (9.46) and the form of P(uy,), if E+T > 1/(1— ) there is a unique monotonically decreasing solution
of (9.42) subject to (9.44)

should be
E+T>1/(1-p8) o%f, X (9.45) & Pluy,) DX, HERK (9.42) (G (9.44) T T) OHFAIEAfFA
W—2FET 5.

e p.477

¢+ < Pmax < q+  should be ¢ < pmax < gy

e p.477
u € [0, P(pmax)] should be  u € [0, /2P (Pmax)/A]

o p.482
and used the approximation A = V - u.
should be
FRA~ -V -uzZHV5Z LT,

e p.482
If we consider a small infinitesimal rectangle whose sides are oriented along the principal axes of the local

two-dimensional stress tensor €, a deformation changes the rectangle into another rectangle.

25



should be

RN 2 KIGEAT ¥V )L € DEMICTHAI AT R B NDRATEE2EZ 5 &,
RzszRAMELS.

p.485

F(¢;01/09) = F((1/2)T — ¢;01/02)

Chapter 10

p.494

The former are almost guaranteed to occur in severe burn wounds (Kisher et al. 1982).

should be

should be  F(¢;01/02) = F((1/2)7 — ¢;02/01)

HREDEMGIC B W T, AiFEN3IEHIETH 5 (Kischer et al. 1982),

p-510

The models we have discussed in this section crucially included some viscoplasticity effects which

should be
EN e

p.515

LTELETNVIE, FERICEERZ LIZ, b 5HBIESREEGA TV,

ZDORFTBIEEBICE > T

the effective strain is equal to the actual strain, here denoted by e;;, minus the effective strain, z;;.

should be

(HIWE) AIEAEEIEDER e 26 BEEH 2, L0 bDIZE L L,

p-516

should be

p.516

should be

p.516

DA

2 = fW)
DAi .
=S

PTMTZt)MP = A(t)T

PTMTZ(t)MP = A(t)
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.. and the density of collagen added to existing fibres is (1 —¢(5))(dS/dt)dt where % is the local secretion
rate.

should be

(i) BEAFOBMEIBMS N7 a 7 — 7 v OFERINGE (1 — ¢(S))(dS/dt)dt TH 5. 7272 L dS/dt (Rt
W BE R 2R LT 5,

e p.517
Dl;  q(S)0S
D = %E(l —1;) (10.35)
should be
Dr = %E(l —1;) (10.35)
e p.519
; N . o A
sj o rJ _ ik, jk ik, jk TN
m A|:(A).’Tm :| {m m"N ; —m"m AN]j (10.46)
should be
5 N i i .
m¥ A {(A) Tm 7] = {m FmIPN; —m kmijJN] ) (10.46)
e p.521
N
aa—t =-V-J =[DD;;N];; (10.55)
should be
N
687 =—-V.-J=[Di;N];; (10.55)
Chapter 11
o p.536

Practica Chirugiae  should be  Practica Chirurgiae

e p.537
Cinotto (1969)  should be  Cinotti (1969)

e p.545 -
n-D(@)Ve=0 for x on OB (11.8)
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should be

OB LD ziz2»wT n-D@E)Ve=0

p-548

survival time = #jethal — tdetect

should be

1

~
~

('Flethal - Fdetect)

E

survival time = fiethal — tdetect

p.549

1
2\/D7p(ﬂethal - Fdetect)

~
=~

An establishment phase only exists for ¢ > 1.

should be
A ) > e DBAICOBRFAET S,

p-549

note that the minimum is at t, = ¢
should be
te=1DEFIME e 2L 5

p.550
In this situation ... D(z) = D
should be

SRDOEBEDORI T Tl (HIE) D(z)

p.553
(r)

should be

(r) =

p.554

should be

=D Tbh5s.

fooc r2e(r, t)dr /°° 5
=20 _ 7 S t)d
fooo re(r, t)dr 0 re(rt)dr

> r2¢(r, t)d R
7f0 re(r,t)dr = —/ 7‘20(7', t)dr
0

fooo re(r,t)dr A2

o 1 2 .
(ry = 27T/ r2e(r, t)dr — 27T/ Nrldr = ?ﬂ
0 0

(11.8)

(11.25)

(11.25)

(11.28)

(11.28)



p-554

In Figure 11.7, ... the asymptotic expansion (11.26) overestimates the mean radius for £ > 96 hours.
should be

1.7 %825 &, (FFI%) £ > 96 I <%, WHEK (11.30) 225 OIEIEEOVIFEE L D MEFICKEL %25
ZEBDRS,

p-561

In the preliminary simulations the corpus callosum is connected to the grey matter cortex by white mat-
ter fibres radiating from the corpus callosum, represented by the boomerang shape, as shown in Figure
11.10(a)—(d).

should be

TRy T 2L —vay T}, K1111(a)~(d) IKWRTEHIC, 7—X 5 W%z LMk ERAERE LW, K
2 S TRAPIRICAR Y 2 FVERSHEIC K D i S T 5,

p.568

Although the tumour looks fairly localized, by increasing our detection abilities by a factor of 20 ..., we
see in Figure 11.15(c) that the tumour has dramatically invaded throughout the right cerebral lobe and
across the corpus callosum to the contralateral hemisphere. After 140 days, Figure 11.15(b) represents the
portion of the tumour detectable on enhanced CT at the time of death.

should be

BaE % 20 f5EO (BeAmIciE, BMEEOEOMEICEKETE 3), 1em? b h 500 HoOMAE B TE 3
REBIZT 2L, M11.15(0) kI, AMEZBZ T, BERZEYID, ROHIOERIC £ CRINIC RS 23BN
LTw2D05%0 5%, 140 AR, HEMILC L L Sicponiady CT ICk T 5, RIEAREZ RS O 2 X
11.15(c) o R T,

p.572
1
survival time ~ (Plethal — Tdetect) (11.39)
vDp
should be
1 _
A =~ ﬁ(rlethal - Tdetect) (1139)
p.572
We get an estimate of between 170 days and 380 days.
should be

X (11.39) 23 &, AFMHROREEMIZ 85 H2 5 190 HE % 5.

p-572

For a low grade tumour ... we get between 1698 days and 3798 days.

should be

7V — FHMRGEE O G, (i) AR OH#EMEIX 849 H5 1899 HE %45,
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p.572

The lower of these survival times is reasonably close to the values given in Table 11.6 for a high and low
grade tumour in Position 3.

should be

NS OHEEED BRI, £ 11.6 D (M1E 3 ICHFET 5 H 7 L — FIEE S X MK 7 L — FIEE O 471
HOfE) Lhi bk,

p-584

Figure 11.22 is wrong. It needs correction to be consistent with Woodward et al. (1996).

p-584

Spatially homogeneous model projected increase in survival time following various extents of resection.
(From Woodward et al. 1995)

should be

2N — R ' T MICB T, L 2 TARNYIER 21T &, BFHEOERDR S5 07, (Woodward
et al. (1996) £ 0.)

p-585

We consider the tumour was initiated by a point source of N cells at the origin and so the pre-resection
problem satisfies (11.38) for 0 <t < ¢, , ...

should be

0 N AEOMBADSELE S 2 R0LH & BT IG £ 5 L5 2 % DT, SHEHIYIRRZ4T ) iioREIZ 0 <t < t,
WWBWTA (11.40) 2 A% T,

p.585

At resection, a central core of radius R, is removed, so the post-resection problem satisfies (11.38) for
t > t, with initial conditions (¢t = t,.),...

should be

HNEHNYIBRE ORIEZ ¢ > ¢, 1ICBWTR (11.40) B AL, WHIEHE (t =t,) 1 (%)

p.585
Cpostresect (717 67 tr) = F(Tv 9) (1142)
- AVH(T - R’l’) Cpreresect (ry 9> tr)
N r2
= H(r — Rr) 7471_1:1" exp <t7n - 471’,«)
should be

oz (r,0,tr) = F(r,0) (11.42)
= H(r — Ry) ey (r, 0, 1)

N r?
:H(TfRT)HeXp <tT - E)
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p.585

where K is the fundamental solution of (11.38) for a point source at (r,0) = (£, ) introduced at t = ¢, ...
should be

ZITK R, t=t 12BVT (10) = (£, ) KHEEOMFEAERE LD 254D (11.40) DHEARBTHH ()

p.586

Rescaling near v = 0 we have, for large A,

222/E eA(lf(vl’/Q),.,)dv ~ eA /OO efA(UZ/g)dUNeA QI
0 S A
should be
v=0 DFEFETIV A=V v I T25L, ADPKRERLE

I~2/5 GAU=(02/2)) gy o oA /OO o~ AW /2) g A 2m

0 —00 A

&5,
p-587
Introducing a new variable w = § — (rt,/r) and expanding for large x gives ...
should be

Wl w=E— (rt,/t) ZBAL, RE% z KOV TEBMT S L ()

p-587

From the asymptotic solution (11.43) we can deduce how the invading front of tumour cells has been slowed
down as a consequence of resection.

should be

WREAR (11.46) XD, SHRHRBIBROFER & LT, MEMIEOSEHYRINEY 2 B LUz LI 72 5 D% 3

p.589

.. with ¢(zx, t,) = F(x), the initial distribution of cells after resection and n - D(x)V = 0 for « on 9B (the
boundary of the brain).

should be

NEHI IR DRIBAD I 13 c(x, t,) = F(x) TH D, 0B MOER) ED x> Tn- D(x)Ve=0
Th 3.

p.594
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KT ®WZLV—FL2BEOPRES L — F oI U CRIRINAERN 217> 2o, WkS g aimos
G LA Z, 2 TOMEIRDOWTRT, (Swanson (1999) £ 0 .)

fizi  p(/H)  D(em?/H) YIRSNAIBEORE % AN (H)

1 1.2x1072 1.3x10°3 36.9 127.3
1.2x1072 1.3x10~* 95.5 420.8
1.2x107% 1.3x 1073 12.5 129.6

2 12x1072 13x1073 41.3 169.0
1.2x1072 1.3x107* 92.9 525.5
1.2x1072 1.3x1073 13.1 462.9

3 12x1072 13x10°3 48.3 185.6
1.2x1072 1.3x10~* 95.8 613.9
1.2x107% 1.3x10°3 15.9 486.1

#8 W/ L—FL 2MEORBES L — F oM U CAHIBYIERMN 217 > 72 Bf o, WIS L7 g ARt o H
& LA Z, 2 TOMEIR DWW TR, (Swanson (1999) £ 1 .)

(i p(/H)  D(em?/H) IS NAMSORE % AR (H)

1 1.2x1072 1.3x10°3 86.7 253.7
1.2x1072 1.3x10~* 99.9 868.5
1.2x107% 1.3x 1073 55.7 1078.7

2 12x1072 13x1073 92.4 337.0
1.2x1072 1.3x107* 99.9 945.0
1.2x107% 1.3x 1073 44.2 1046.3

3 12x107%2 13x1073 96.2 438.0
12x1072 1.3x107* 99.8 985.6
1.2x107% 1.3x 1073 52.8 1078.7

e p.599
The times, 1,1, ¢ = 1,10 and ¢ ;, j = 1,4, are directly related to those given in Figure 11.29.
should be
Wty i =1, 010 &ty =1, 4 X 11.20 1052 & U & BT L TV 5.,

e p.602
However, the sawtoothlike shape of the curve in Figure 11.30, resulting from the successive treatments, is
sensitive ...
should be
L LA, BHREBRDEI/REL LTAEL 21K 11.29 OFEHIRO IS (Bh)
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Chapter 12

p.620

which, as is clear from Figure 12.3(c), gives an infinite range of unstable wavenumbers to the right of kg

where W (k) = 0.
should be

DL EX 12.3(c) oISl kT, ANEENT 2 PO, W(ko) =0 %% ko OAMNRERICIA

85,

p.620

we can expand n(x — z) in a Taylor series to get

should be

n(x+z) 2747 —HBE~EERLT

p.623

should be

p.626

should be

p.626

I — / na(lr — v wrn(r)dr,

5]

wLR*nL:/ np(|r — v Nwrr(r*)dr®, sgr=wgg*ng+wWLr*ng.
D

wLR*nL:/ nL(T*)’LULR(‘Tf’I"*DdT*, SR = WRR *NR +WLR*MNT,.

A= =N2W,(k), W,(k)= / wa(r — 7*]) explik - *|dr*
D

A= %NQWa(k), Wa(K) =/ w (|7 — 77|) explik - r*]dr”
D

since w, is similar to W (k) there.

should be

BERS, w, B 12.3 D w(z) EHFPL TR E720TH S,

p.632
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wEE*E:/ wee(|r — r*) exp[At + ik - v¥]dr*
D

= exp[At] / wgg(|u]) explik - u + ik - r]du
D

(12.34)
= exp[At + ik - 7] / wrg(|u|) explik - u]du
D
= WEE(’C) exp[/\t + ik - ’!’}
should be
S / win(|r — 7)) exp[Xt + ik - *]dr
D
= At ik - u+ik - r]d
exp[At] /D wgg(|ul) explik - u + ik - r]du (12.34)
= exp[At + ik - 7] / wpg(|u]) explik - u]du
D
= Wgg(k) exp[At + ik - 7]
p.634
expilkex], explkcy], explke(ycosd + zsing)] (12.41)
should be
expilkex]|, expilkey], expilke(ycosp + xsing)] (12.41)
p.635
Emwd -
= {cos|a + k.rsin(6 + 7/6
(1(x7y) {eos] O+ /6] (12.47)
+ cos[b + kersin(f — 7/6)] + cos[c + ker cos(d — 7/6)]}V (pe, k2)
should be
E@wv -
= {cos|a + k.rsin(f + 7 /6
<1(x,y) {eos] ©+/6)] (12.47)
+ cos[b + korsin(f — 7/6)] + cos[c + kercos 0]}V (pe, k2)
p.638
(b) Citarium pica; (c) Conus textus;
should be

(b) F¥ & =44 (Cittarium pica), (c) X=3Y &7 (Tectus conus),

p.644
Unlike previous models, the time variation in the solutions is discrete and so linear stability here
requires|A(k)| < 1 (recall the analysis in Chapter 2).

should be

DHIDE TN LR, ZOETVTIRFABEERINTS 2 DT, MIBLER 2 BEIHEME (MK)] < 1
Ths (AMHE 2 mrHuiiEni ),
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p.644

That is, for the solutions (12.62) to be stable for all k, A(k) from (12.67) must lie within the unit circle in
the complex A-plane.

should be

Thbbt, X (12.63) DIWDMEILETH 5 7=z, A (12.67) 26K FE 5 k) 23, EFEFH Lo RO
WEBIC 2 L Ud e & 2w

p.646
From (12.61) and (12.62), should be 3% (12.61), (12.63) & b

p.646
Piii(z) — Py o< A(0) (12.71)
should be
Piii(z) — Py o At (12.71)
p.647
Now from (12.61) and (12.62),
should be
& (12.61), (12.63) kb
p-647
* 7
—LMQ>m%Piﬂ for 0<hi <k<ks (12.72)
should be
* Y
—%(H>mwpﬁ}im 0<ki <k <k (12.72)
p.645-648

From Figure 12.19(c), which was obtained from an analysis of (12.68), we see that this occurs if both
a(k) < 0 and b(k) < 0 and the point (a,b) crosses the bifurcation line in the (a,b) plane in the 3rd
quadrant. ...... Many shells exhibit such abrupt pattern changes; see the example in Figure 12.22(d).
should be

(REFTOFIMIC RS BB BHAEL T2 LBbns ke, UTOREZRT5.)

A D31 2T 2 B SRMAE, A (a,b) BEABEEO TETOM, 2B ThHs (b(k) <01
MHETHV), K (12.69) DFHRIE b(k) < 0 DRED T TIFIEL WA, ZOREICEEBE IRV, £k, MUETT
bz TR (12.69) D 2% S IFEBERBEEDEET 2, LI ERICHRI1EEN S,

AN O LT H % Ermentrout et al. (1986) DWNEZEEE 2 7 LT, BIE2T>igiwz AT ISR~ 3,

(i) FEDOEIC X =1 ZE#T 2545
AW 1 REET 2SR, K 12.19 I8V TH (a,b) 2 B @ X 9 ICEMAIEAEIRO 72T O % Y]
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22LTHDY, Thbba+b+1<0:%22LTH%. a,bDERN ((12.67) ) 2RATZ L, ZD%
GBS

L > (1—-6+7)/(1-4) (12.69)

LFETH D EbhD. TDX) BFEPEI - 7BIciE, HIEED kL ICOWTIOELELALEND
kI ks, TokE, K1221(b) Dk H i, HANNZEREREEZ b DN RGER Y —r o s,

(i) OB A = —1 2T 2854
A DS —1 2T 2 BEEEE, K 1219 1I2BW TR (a,b) DWEF A © & 5 i ZATGERO A T 0z
YarzeThh, §hbb —a+b-—1<0 %32 TH5. a,b DEBREZNAT S E, TOEMIF

L*<—(14d64+7)/(1+9) (12.72))

LRAfETH B b3, LHk) OB LD (K 12.20(a) M), ZOREBRYICRT S LI B2 DIE
BT k=0DLETHBD, ~MWEI—VDFRETZ, Lol N OS54 LAT Y 7T EICKEET
2720, BAIMNZRBREZ S OKPARRsE s s,

(iii) DB N = explig] (¢ # 0,7) 2T 2854
A\ D8 explig] Zi#T 2 HEF05MEE, X 12.19 I2B W TR (a,b) 2 C O & ) I = AFHEEO Eoilz
MYz Thh, Thbbb—1>0,%22TH5. b DEBENERATEE, Z0&ME

L*>(1-7)/8 (12.75")

LEfETH 2 Z Db s, ZoHEIciE, M 12.21 (¢) D & ) REERZERKA S — > (3o DR ERR)
»Eons,

B, (1-7)/0>1+~/(1-0) B d<1— 7 LAMBTHSZ. WAIT, +1 TONHEHREEM T
IO BEICAECIBLETTEMIE <1 - /7 TH 2.

p.653

Not only that, in (12.83) we tacitly assumed that D = Ms is positive.

should be

ZNEFTR, ekt (12.82) M, B0 I BIc D= M, BIETH2 b LHEL TV,

p.654
op >*pP P
— =S8(MyP)~R—P—Dy—— — Dy—— 12.
ar ~ SMoP) — R Yoa2 TP 0t (12.87)
O 3P 1= 8)R = g(PR) (12.88)
should be
8—P—S(MP)—R—P—D82—P— o'p (12.87)
ot 70 Yorr T TP aat '
%:WP—(l—é)R:g(P,R) (12.88)
p.656

mescal bean (Sophora secondiflora) — should be ~ X AN — (Sophora secundiflora)

36



Chapter 13

e p.664

By linearising the second equation of (13.5) as z — oo, where S =1 — s, with s small, we have
s +cs'—I1=0,

should be
K (13.5) DFE 2% 2 —» 0o THIBLL, S=1-s&& L, sZBNRELT,

s"+es’+I =0

BRONS,

e p.672
The Center for Disease Control (CDC) in Atlanta recommend booster injections on days 0, 7, 28 and 365
for people in exposed areas;
should be
T8I h BT A ABEREM P~ ¥ — (Centers for Disease Control and Prevention, CDC) &, ¥
IO 7, 28, 365 HEICHITRIER 2179 2 L2 HEEL T3,

e p.687
Further, if (13.36) holds, then f(0) > 0 and f has a negative slope at A = 0.
should be
&0z, A (13.34) PRV ITE F(0) >0 THY, £ f(\) R A=0TEADEEZ LD,

e pD.G87
After considerably more algebra we find that, to first-order in € and §, v, is given by the positive real roots
of g(v?), ...
should be
DEDEVEHRICKD, 6 JI20TORTEML T, v i3 g(v?) DIEOEHEIRTHZ6NE I LBbh 5,

e p.6G88

a’ = [O, d=p=29 — 1+ 0)2u?, 17,LH] ,
7 v
v 1}2 1/2

bl = 0,0,1,7i(d+—) , ¢f'=11,0,0,0]
2 4

should be
o, 2

o v v
v 1]2 1/2

b’ = 0,0,1,§i(d+1) , ¢’ =11,0,0,0]
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p.688
To determine the behaviour of the wave as it approaches this critical point, we now linearise (13.35) about

(s0,90,70) to get (after more algebra) the eigenvalues

Ahxgzé[v5i{(vﬁ)2+qu+@}UT, (13.39)

to first-order in € and §, and
i [epd(l—d) 12
A3, y=F —¢ —n——>
3, N4 ’U{ p,+d
—ed {20(p + )2} {uu—@(ﬁj4)+m+@ﬂ

(13.40)

to second-order in € and §.

should be

Z DERFIGE D BROFEDIRIE 2 PRET 272012, F (13.35) % (s, q0,70) DAY THIBLL, FAEMHEE,
g, 0 IZD2WTOXTIEMBLT,

1 " 2 1/2
/\1,/\2—5 |:'UU:|:{(’UU> +4(,U+d)} s (1339)
BIUY, g 6120w T 1 RTELL T,

) /2

i (epd(1—d))"
Ag Ay =+~ KA D
EPRAY U{ ,U/+d

—ed {20+ ) {u - a) (5 -1) + (w+ 2}

(13.40)

E %,

p.689

Here w is the period of the waves, given by the imaginary part of the complex eigenvalues divided by v,
and A is the decay rate of the amplitude, given by the real part of these eigenvalues divided by v.

should be

22T, wREHEROBEAHEORBZ 01592 2 L TRONAEOMIREKTH D, X iFIns DEFHEDIHER
oL TRONKIRIRDINERTH 5,

p.692

In terms of the original (z,t) variables these solutions can be written in the form

s(z,t) = sg + Acos|w(t + z/v) + Y] exp[—A(t + x/v)],

1 !
q JZ,t =4q + —(s—s )
(@,t) = qo M( 0) (13.45)

r(at) =ro+ 5 (g - a0)
to first order in € and 6, ...
should be
TEDEE (x,t) ZAVD L, ZHoDREE, e, 6 IZ20T 0 XTEBRILT,

s(x,t) = so + Acos(w(t + z/v) + ) exp(—A(t + z/v)),
1 !
q@i)=qm+;@*8w’ (13.45)

T@ﬂ:m+%@—m
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DFTLRINS,

p.697

(13.30) gives a carrying capacity outside the break region of K = 149/(a + 0.5yr~ 1) foxes km™ 2 yr~

should be
R (13.30) 22680 7 OB COBIEINA I K = 149/ (0 + 0.5 47 1) Vi km =2 &4 3,

p-697
Figure 13.14 gives x;, = 15.  should be 13.14 6 . =15 72 5.
p.702
Typical values for 6 and p are 0.46 and 0.08, respectively.
should be

d, p DAY 2l d = 0.46, 4 = 0.08 TH 5.

p-702

the total number of infected foxes satisfies

/OO (I+R)dX = <K;))1/2 (1+§) %.

From Figure 13.13,
/ (I+R)dX ~6.9 % / km
giving (KD/B)'/2qy ~ 5.9 foxes/km.
should be
R DR g

AOO(IJrR)dX = (KBD)W (1+ %) o

/ (I+R)dX ~6.9 & / km
0

ZHTT. 13.13 5,

THY, TI5, (KD/B)Y2qo~59VE /km k743,

p-704

In the expression (13.68), the dependence of z. on ¢ and m roughly agrees with Figure 13.14.
should be

R (13.68) ILBWT, 2. DdBLV m ~DEKAFFBELRI 13.14 £ —HL T35,

p.711
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S N «
ol N
a—TfBRS—UI—[b+(a—b)?}I, a0l
OR N 0’R ’
T =0l —aR—~YR— {bJr(afb)}] R+DRW’
YA . N
a—T—'yRJr(afa VZ — {b+(afb)?] Z
should be

oS N *
a—T—(a—b) (1—E>S+a Z — BRS,
ol N
T =pBRS —ol — {b+(a7b)g}l,
OR N 2R (13.70)
EYA . N
ﬁ—fyR—Q—(a—a )Z—{b—f—(a—b)E}Z

Chapter 14

e p.724

White (1995) gives an extensive review of the literature and modelling studies and the articles by Lewis et
al. (1998) and Moorcroft and Lewis (2001) review some of the more recent theoretical studies

should be

White (1995) 113 JAHE 7 SR € T AR ORFIF 2N TE D, Lewis et al. (1997) % Moorcroft and
Lewis (2001) ICiZ, ARETHEAT 2EMRNE T VEH W, REOHRNHAIEI LTS,

p.733

Equation (14.14) is a weak solution of (14.11), in the sense that it satisfies (14.11) at all points except
T = tx3.

should be

K (14.14) 13, v =2, 2, ZRCATORTH (14.11) 2A 7T LWV FHKT, X (14.11) OFETH 5.

pP-735
Ja, = au(q)uVyg (14.17)
should be
Ja, = —au(q)uVq (14.17)
pP-735
J —ucy (T — Ty, q) (0)>0 deu 0
Cu — ucu ’U47q bl cu b dq = )
dd,,
Jq, = —dy(u)Vu, d.(0) >0, T = 0,
da,,
Jo, = ay(q)uVy, a,(0) >0, diq >0
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should be

Jc,,, = _ucu(z - wuvq)v Cu(o) > 07 di;] > 07
dd,
Jy, = —d,(u)Vu, dy(0) >0, —— >0,
4, = —du () =0, o
d u
Ja, = —au(@)uVy, a,(0) 20, = >0
dgq
e p.736
J., = —vey (T — x4,p), (0)>0 dey 0
Cy T v vy D), v - Y dp = Y%
dd,
Jq, = —dy(v)Vu, d,(0) >0, 7 >0,
v
Jo, = au(p)oV a(0) >0, Y5y
Ay — YU p p7 v - I dp -
should be
Je, = —vey(T — @y, p),  ¢(0) >0 dcv>0
Cy v 'U7p b v py bl dp — b
dd,
Jy, = —d,(v)Vo, d,(0) >0, >0,
dv
da,
J{L,L, = —au(P)UVP7 au(o) Z Oa d(; Z 0
e p.738
Je, = —ucy(x — Ty, q), Ja, = —du(u)Vu, J., = a.(q)uVy, (14.33)
JC’U = _UCU(w - 2171,7]?)7 J(iv = —dU(U)V’U7 Ja,U = Qy (p)UVp (1434)
should be
J., = —ucy(x —xy,q), Jg, = —dy(u)Vu, J,, =—a.(q)uVyg, (14.33)
Jc,, = —’UC/U(li - $mp)7 Jdv = —dv(U)V’U, Jaq, = —au(P)UVp (1434)
e D.740
(€ — Xy,q) =0  should be c(x—xy,,q) =0
o p.742
where K = [u(0) + v(0)]/d is a positive constant.
should be
22T K =u(0)+v(0) ZIEDEHTH 3.
e p.742
(1 + pw)(pu — 1) (L + po)(pv — 1)
r = 7 5 Uz r = 5 Uy 14.51
b (1= puw)? Voo 4 (1 — puv)? “ ( )
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should be

(L + pu) (pu — 1) . (14 pv)(pv — 1)

e p.743
u
5 V- [ew(® — 2y)u + Dy (u)Vu — ay(q)uVgl,
v =V - [ep(x — xy)v + Dyy(v) Vv — ay(p)vVp],
g; (14.52)
D —ully + my(a)] ~ Fyp
9q
ot v[lg + mq(p)] — foa
should be
ou
Fri V- [ew(x — y)u + Dy (u) Vuta, (@)uVyl,
v =V [eo(® — xy)v + Dyy(v)Vuta,(p)vVp),
g; (14.52)
ot ully +myp(q)] — fop,
9q
at v[lg +mg(p)] — foq
e p.743
ou
i V- [ew(® — @y, q)u + dy Vu — ay(q)uVy], (14.53)
C;: =V [Cv(a) - 331;717)11 +d, Vv — au(p)UVpL (1454)
0
7 = ull+my(q)] —p, (14.55)
dq
g = VLT ma(p)] — g (14.56)
should be
ou
Frie V- [ew(@ — @y, Q)u + dy Vutay, (q)uVy], (14.53)
% =V [ey(x — 20, p)v + dy Vo+a, (p)vVp, (14.54)
10}
S = ull+my(@)] - p, (14.55)
0
5 = oL+ my(0)] - 6 (14.56)
o p.747

A fuller model which includes seasonal deer reproduction is discussed by White et al. (1996a);
should be

A DEIMIIFMNITE Z 205, Znzed&t, L D5%E2R%4ET/VIE White et al. (1996b) Ik > TS 11T
W3,
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e p.749
Taken on a daily basis this gives a mortality rate of about 0.002%.
should be
1HICIRT 5 &, JEEHRIE 0.2% L7225,

e p.752
The analysis of the prey-taxis model discussed in Section 14.3
should be
14.4 ficafim L7, SIANOREMEICB S 2 T3,

Appendix A
e Dp.757
/ V2ul2dr > M/ V| 2dr (A4.2)
B aB
should be
/ IV2ul2dr Zu/ [Vl 2dr (A2)
B B
e Dp.757
In (A4.2), u is the least positive eigenvalue of V2 + i for B with Neumann conditions on 0B
should be
7220, X (A2) KBV T uld, OB LT/ A& Aazd L%k V2 OIEOBEEHED ) bERAD b DT
HY
e p.757
O\ 271/2
ot = ey ()]
reB i X (A43)
r=(z;), j=12,3 wu=(y), i=12,...,n
should be
A\ 271/2
IVul| =
[;(&n]) } (A.3)
T:(l']‘)7 j:172737 u:(ul)v 7‘.:1727"'771
e p.759
Viw = axdi(r),
k=0
w = [ (Vw, ). (A48)
B

ag = (¢>0,/Bv2wdr) = <¢0,/aB Vwdr) = 0.
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should be

Viw = Z ardr(r),
k=0

ar = / <v2wa¢k>dr7
B
ag = <¢07/BV2UJdT‘> = (o, /8B n-Vwdr) = 0.
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